revised version published in: Journal of Population Economics, 2014, 27 (4), 923-960
We combine the New Immigrant Survey (NIS), which contains information on US legal immigrants, with the American Community Survey (ACS), which contains information on legal and illegal immigrants to the U.S. Using econometric methodology proposed by Lancaster and Imbens (1996) we compute the probability for each observation in the ACS data to refer to an illegal immigrant, conditional on observed characteristics. The results for illegal versus legal immigrants are novel, since no other work has quantified the characteristics of illegal immigrants from a random sample.
We find that, compared to legal immigrants, illegal immigrants are more likely to be less educated, males, and married with their spouse not present. These results are heterogeneous across education categories, country of origin (Mexico) and whether professional occupations are included or not in the analysis. Forecasts for the distribution of legal and illegal characteristics match aggregate imputations by the Department of Homeland Security. We find that, while illegal immigrants suffer a wage penalty compared to legal immigrants, returns to higher education remain large and positive.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.