An important issue in the analysis of cross-sectional dependence which has received renewed interest in the past few years is the need for a better understanding of the extent and nature of such cross dependencies. In this paper we focus on measures of cross-sectional dependence and how such measures are related to the behaviour of the aggregates defined as cross-sectional averages. We endeavour to determine the rate at which the cross-sectional weighted average of a set of variables appropriately demeaned, tends to zero. One parameterisation sets this to be O(N^2α-2), for 1/2 < α ≤ 1. Given the fashion in which it arises, we refer to as the exponent of cross-sectional dependence. We derive an estimator of from the estimated variance of the cross-sectional average of the variables under consideration. We propose bias corrected estimators, derive their asymptotic properties and consider a number of extensions. We include a detailed Monte Carlo study supporting the theoretical results. Finally, we undertake an empirical investigation of using the S&P 500 data-set, and a large number of macroeconomic variables across and within countries.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.