published in: Journal of Monetary Economics, 2021, 122, 1-16
The U.S. economy has experienced a significant drop in the fraction of the population employed in middle wage, "routine task-intensive" occupations. Applying machine learning techniques, we identify characteristics of those who used to be employed in such occupations and show they are now less likely to work in routine occupations. Instead, they are either non-participants in the labor force or working at occupations that tend to occupy the bottom of the wage distribution. We then develop a quantitative, heterogeneous agent, general equilibrium model of labor force participation, occupational choice, and capital investment. This allows us to quantify the role of advancement in automation technology in accounting for these labor market changes. We then use this framework as a laboratory to evaluate various public policies aimed at addressing the disappearance of routine employment and its consequent impacts on inequality.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.